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Structural Analysis III 

1. Introduction 

1.1 Background 

In the case of 2-dimensional structures there are three equations of statics: 
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Thus only three unknowns (reactions etc.) can be solved for using these equations 

alone. Structures that cannot be solved through the equations of static equilibrium 

alone are known as statically indeterminate structures. These, then, are structures that 

have more than 3 unknowns to be solved for. Therefore, in order to solve statically 

indeterminate structures we must identify other knowns about the structure.  

 

Dr. C. Caprani 3



Structural Analysis III 

1.2 Basis of Structural Analysis 

The set of all knowns about structures form the basis for all structural analysis 

methods. Even if not immediately obvious, every structural analysis solution makes 

use of one or more of the three ‘pillars’ of structural analysis: 

 

 
 

Equilibrium 

Simply the application of the Laws of Statics – you have been using this pillar all 

along. 

 

Compatibility of Displacement 

This reflects knowledge of the connectivity between parts of a structure – as 

explained in this handout. 

 

Constitutive Relations 

The relationship between stress (i.e. forces moments etc) and strain (i.e. deflections, 

rotations) for the material in the structure being analysed. The Principle of 

Superposition (studied here) is an application of Constitutive Relations. 
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2. Small Displacements 

2.1 Introduction 

In structural analysis we will often make the assumption that displacements are small. 

This allows us to use approximations for displacements that greatly simplify analysis. 

 

What do we mean by small displacements? 

We take small displacements to be such that the arc and chord length are 

approximately equal. This will be explained further on. 

 

Is it realistic? 

Yes – most definitely. Real structures deflect very small amounts. For example, 

sways are usually limited to storey height over 500. Thus the arc or chord length is of 

the order 1/500th of the radius (or length of the member which is the storey height). 

As will be seen further on, such a small rotation allows the use of the approximation 

of small displacement. 

 

Lastly, but importantly, in the analysis of flexural members, we ignore any changes 

in lengths of members due to axial loads. That is: 

 

We neglect axial deformations – members do not change length. 
 

This is because such members have large areas (as required for bending resistance) 

and so have negligible elastic shortening. 
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2.2 Derivation 

Remember – all angles are in radians. 

 

Consider a member AB, of length R, that rotates about A, an amount θ , to a new 

position B’ as shown: 

 

 
 

The total distance travelled by the point B is the length of the arc BB’, which is Rθ . 

 

There is also the ‘perpendicular distance’ travelled by B: CB’. Obviously: 
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There is also a movement of B along the line AB: BC, which has a length of: 

 

 ( )1 cosR θ−  

 

Now if we consider a ‘small’ displacement of point B: 

 

 
 

We can see now that the arc and chord lengths must be almost equal and so we use 

the approximation: 

 

 ' tanBB R Rθ θ= ≈  

 

This is the approximation inherent in a lot of basic structural analysis. There are 

several things to note: 

• It relies on the assumption that tanθ θ≈  for small angles; 

• There is virtually no movement along the line of the member, i.e. 

( )1 cos 0R θ− ≈  and so we neglect the small notional increase in length 

'AB ABδ = −  shown above. 
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A graph of the arc and chord lengths for some angles is:  
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For usual structural movements (as represented by deflection limits), the difference 

between the arc and chord length approximation is: 
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Since even the worst structural movement is of the order 200h  there is negligible 

difference between the arc and chord lengths and so the approximation of small 

angles holds. 
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2.3 Movement of Oblique Members 

Development 

We want to examine the small rotation of an oblique member in the x-y axis system: 

 

 
 

The member AB, which is at an angle α  to the horizontal, has length L and undergoes 

a small rotation of angle θ  about A. nd B then moves to B’ and by the theory of 

small displacements, this movement is: 

 E

 

 Lθ∆ =  

 

We want to examine this movement and how it relates to the axis system. Therefore, 

we elaborate on the small triangle around BB’ shown above, as follows: 
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By using the rule: opposite angles are equal, we can identify which of the angles in 

the triangle is α  and which is 90β α= ° − . With this knowledge we can now 

examine the components of the displacement ∆  as follows: 
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Therefore, the displacement of B along a direction (x- or y-axis) is given by the 

product of the rotation times the projection of the radius of movement onto an axis 

perpendicular to the direction of the required movement. This is best summed up by 

diagram: 
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X YL θ∆ =  

 

Y XL θ∆ =  

 

Problem 

For the following structure, show that a small rotation about A gives: 
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2.4 Instantaneous Centre of Rotation 

Definition 

For assemblies of members (i.e. structures), individual members movements are not 

separable from that of the structure. A ‘global’ view of the movement of the structure 

can be achieved using the concept of the Instantaneous Centre of Rotation (ICR). 

 

The Instantaneous Centre of Rotation is the point about which, for any given moment 

in time, the rotation of a body is occurring. It is therefore the only point that is not 

moving. In structures, each member can have its own ICR. However, movement of 

the structure is usually defined by an obvious ICR. 
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Development 

We will consider the deformation of the following structure: 

 

 
 

Firstly we must recognize that joints A and D are free to rotate but not move. 

Therefore the main movement of interest in this structure is that of joints B and C. 

Next we identify how these joints may move: 

• Joint B can only move horizontally since member AB does not change length; 

• Joint C can only move at an oblique angle, since member CD does not change 

length. 

 

Thus we have the following paths along which the structure can move: 
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Next we take it that the loading is such that the structure moves to the right (we could 

just as easily have taken the left). Since member BC cannot change length either, the 

horizontal movements at joints B and C must be equal, call it ∆ . Thus we have the 

deformed position of the joints B and C: 

 

 
 

Now knowing these positions, we can draw the possible deflected shape of the 

structure, by linking up each of the deformed joint positions: 
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Looking at this diagram it is readily apparent that member AB rotates about A (its 

ICR) and that member CD rotates about D  (its ICR). However, as we have seen, it is 

the movements of joints B and C that define the global movement of the structure. 

Therefore we are interested in the point about which member BC rotates and it is this 

point that critically defines the global movements of the structure.  

 

To find the ICR for member BC we note that since B moves perpendicular to member 

AB, the ICR for BC must lie along this line. Similarly, the line upon which the ICR 

must lie is found for joint C and member CD. Therefore, the ICR for member BC is 

found by producing the lines of the members AB and CD until they intersect: 

 

 
 

From this figure, we can see that the movements of the structure are easily defined by 

the rotation of the lamina ICR-B-C about ICR by an angle θ . 
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Example 

Find the relationship between the deflections of joints B and C. 

 

 
 

Our first step is to find the ICR by producing the lines of members AB and CD, as 

shown opposite.  

 

Because of the angle of member CD, we can determine the dimensions of the lamina 

ICR-B-C as shown. 

 

Next we give the lamina a small rotation about the ICR and identify the new positions 

of joints B and C. 

 

We then work out the values of the displacements at joints B and C by considering 

the rule for small displacements, and the rotation of the lamina as shown. 
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 4 14
3 3BX

6θ θ⎛ ⎞∆ = ⋅ =⎜ ⎟
⎝ ⎠

 

 4 25
3 3C

0θ θ⎛ ⎞∆ = ⋅ =⎜ ⎟
⎝ ⎠

 

 16
3CX BX θ∆ = ∆ =  

 4CY θ∆ =  
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3. Compatibility of Displacements 

3.1 Description 

When a structure is loaded it deforms under that load. Points that were connected to 

each other remain connected to each other, though the distance between them may 

have altered due to the deformation. All the points in a structure do this is such a way 

that the structure remains fitted together in its original configuration. 

 

Compatibility of displacement is thus: 

 

Displacements are said to be compatible when the deformed members of a 

loaded structure continue to fit together. 

 

Thus, compatibility means that: 

• Two initially separate points do not move to another common point; 

• Holes do not appear as a structure deforms; 

• Members initially connected together remain connected together. 

 

This deceptively simple idea is very powerful when applied to indeterminate 

structures. 
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3.2 Examples 

Truss 

The following truss is indeterminate. Each of the members has a force in it and 

consequently undergoes elongation. However, by compatibility of displacements, the 

elongations must be such that the three members remain connected after loading, 

even though the truss deforms and Point A moves to Point A’. This is an extra piece 

of information (or ‘known’) and this helps us solve the structure. 

 

 

Beam 

The following propped cantilever is an indeterminate structure. However, we know 

by compatibility of displacements that the deflection at point B is zero before and 

after loading, since it is a support. 
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Frame 

The following frame has three members connected at joint B. The load at A causes 

joint B to rotate anti-clockwise. The ends of the other two members connected at B 

must also undergo an anti-clockwise rotation at B to maintain compatibility of 

displacement. Thus all members at B rotate the same amount, Bθ , as shown below. 

 

 

 
Joint B 
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4. Principle of Superposition 

4.1 Development 

For a linearly elastic structure, load, P, and deformation, δ , are related through 

stiffness, K, as shown: 

 

 
 

For an initial load on the structure we have: 

 

 1 1P K δ= ⋅  

 

If we instead we had applied  we would have gotten: P∆

 

 P K δ∆ = ⋅∆  

 

Now instead of applying  separately to  we apply it after  is already applied. 

The final forces and deflections are got by adding the equations: 

P∆ 1P 1P
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( )

1 1

1

P P K K
K

δ δ
δ δ

+ ∆ = ⋅ + ⋅ ∆

= + ∆
 

 

But, since from the diagram,  and 2 1P P P= + ∆ 2 1δ δ δ= + ∆ , we have: 

 

 2 2P K δ= ⋅  

 

which is a result we expected.  

 

This result, though again deceptively ‘obvious’, tells us that: 

• Deflection caused by a force can be added to the deflection caused by another 

force to get the deflection resulting from both forces being applied; 

• The order of loading is not important ( P∆  or  could be first); 1P

• Loads and their resulting load effects can be added or subtracted for a 

structure. 

 

This is the Principle of Superposition: 

 

For a linearly elastic structure, the load effects caused by two or more 

loadings are the sum of the load effects caused by each loading separately. 

 

Note that the principle is limited to: 

• Linear material behaviour only; 

• Structures undergoing small deformations only (linear geometry). 
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4.2 Example 

If we take a simply-supported beam, we can see that its solutions can be arrived at by 

multiplying the solution of another beam: 

 

 
 

The above is quite obvious, but not so obvious is that we can also break the beam up 

as follows: 

 

 
 

Thus the principle is very flexible and useful in solving structures. 
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5. Solving Indeterminate Structures 

5.1 Introduction 

There are two main approaches to the solution of indeterminate structures: 

 

The Force Method 

This was the first method of use for the analysis of indeterminate structures due to 

ease of interpretation, as we shall see. It is also called the compatibility method, 

method of consistent deformations, or flexibility method. Its approach is to find the 

redundant forces that satisfy compatibility of displacements and the force-

displacement relationships for the structure’s members. The fundamental ideas are 

easy to understand and we will use them to begin our study of indeterminate 

structures with the next few examples. 

 

The Displacement Method 

This method was developed later and is less intuitive than the force method. 

However, it has much greater flexibility and forms the basis for the finite-element 

method for example. Its approach is to first satisfy the force-displacement for the 

structure members and then to satisfy equilibrium for the whole structure. Thus its 

unknowns are the displacements of the structure. It is also called the stiffness method. 
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5.2 Example: Propped Cantilever 

Consider the following propped cantilever subject to UDL: 

 

 
 

Using superposition we can break it up as follows (i.e. we choose a redundant): 

 

 
 

Next, we consider the deflections of the primary and reactant structures:  
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Now by compatibility of displacements for the original structure, we know that we 

need to have a final deflection of zero after adding the primary and reactant 

deflections at B: 

 

 0P R
B B Bδ δ δ= + =  

 

From tables of standard deflections, we have: 

 

 
4 3

 and 
8 3

P R
B B

wL RL
EI E

δ δ= + = −
I

 

 

In which downwards deflections are taken as positive. Thus we have: 

 

 

4 3

0
8 3
3

8

B
wL RL
EI EI
wLR

δ = + − =

∴ =
 

 

Knowing this, we can now solve for any other load effect. For example: 

 

 

2

2

2 2

2

2
3

2 8
4 3

8

8

A
wLM R

wL wL

L

L

wL wL

wL

= −

= −

−
=

=

 

 

Note that the 2 8wL  term arises without a simply-supported beam in sight! 
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5.3 Example: 2-Span Beam 

Considering a 2-span beam, subject to UDL, which has equal spans, we break it up 

using the principle of superposition: 

 

 
 

Once again we use compatibility of displacements for the original structure to write: 

 

 0P R
B B Bδ δ δ= + =  

 

Again, from tables of standard deflections, we have: 

 

 ( )4 45 2 80
384 384

P
B

w L wL
EI E

δ = + = +
I
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And: 

 ( )3 32 8
48 48

R
B

R L RL
EI E

δ = − = −
I

 

 

In which downwards deflections are taken as positive. Thus we have: 

 

 

4 380 8 0
384 48

8 80
48 384

10
8

B
wL RL

EI EI
R wL

wLR

δ = + −

=

=

=

 

 

Note that this is conventionally not reduced to 5wL 4 since the other reactions are 

both 3wL 8. Show this as an exercise. 

 

Further, the moment at B is by superposition: 

 
 

Hence: 

 

2 2 2

2

10 10 8
2 2 8 2 2 16

8

B

2RL wL wL L wL wL wLM

wL

−
= − = ⋅ − =

=
 

 

And again 2 8wL  arises! 
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5.4 Force Method: General Case 

Let’s consider the following 2° indeterminate structure: 

 

 
 

We have broken it up into its primary and redundant structures, and identified the 

various unknown forces and displacements.  

 

We can express the redundant displacements in terms of the redundant forces as 

follows: 
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R
BB B BBR fδ =  R

BC B BCR fδ =  
R

CC C CCR fδ =  R
CB C CBR fδ =  

 

We did this in the last example too: 

 

 
38

48
R
B B B

LR R
EI

δ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

BBf  

 

The coefficients of the redundant forces are termed flexibility coefficients. The 

subscripts indicate the location of the load and the location where the displacement is 

measured, respectively. 

 

We now have two locations where compatibility of displacement is to be met: 

 

 0P R
B Bδ δ+ =  

 0P R
C Cδ δ+ =  

 

As we can see from the superposition, the redundant displacements are: 

 

 R R
B BB C

R
Bδ δ δ= +  

 R R
C CC B

R
Cδ δ δ= +  

 

And if we introduce the idea of flexibility coefficients: 

 

 R
B B BB C CBR f R fδ = +  

 R
C C CC B BC B BC C CCR f R f R f R fδ = + = +  
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Then the compatibility of displacement equations become: 

 

 0P
B B BB C CBR f R fδ + + =  

 0P
C B BC C CCR f R fδ + + =  

 

Which we can express in matrix form: 

 

 
0
0

P
BB CB BB

P
BC CC CC

f f R
f f R

δ
δ
⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫

+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦ ⎩ ⎭⎩ ⎭

 

 

And in general we have: 

 

 { } [ ]{ } { }P + =δ f R 0  

 

Since we know the primary structure displacements and the flexibility coefficients we 

can determine the redundants: 

 

 { } [ ] { }1 P−
= −R f δ  

 

Thus we are able to solve a statically indeterminate structure of any degree. 
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6. Problems 
Use compatibility of displacement and the principle of superposition to solve the 

following structures. In each case draw the bending moment diagram and determine 

the reactions. 

 

1. 

 

3
16A
PLM =  

2. 

 

 

3. 

 

3 8CV P=  

4. 

 

2

16B
wLM =
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7. Displacements 

Point Displacements 

Configuration Translations Rotations 

w

L

A B
C

 

45
384C

wL
EI

δ =  
3

24A B
wL

EI
θ θ= − =  

P

L/2 L/2

A B
C

 

3

48C
PL

EI
δ =  

2

16A B
PL

EI
θ θ= − =  

P

a b
L

A B
C

 

33 3 4
48C
PL a a

EI L L
δ

⎡ ⎤⎛ ⎞≅ −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

( ) ( )

( )2 2

2
6

6

A

B

Pa L a
L a

LEI
Pa L a
LEI

θ

θ

−
= −

= − −

 

aL
L

A B
C

 

( ) (
2

1 1 2
3C
ML a a a

EI
δ = − − )  

( )

( )

2

2

3 6 2
6

3 1
6

A

B

ML a a
EI

ML a
EI

θ

θ

= −

= −

+
 

w

L
A B

 

4

8B
wL
EI

δ =  
3

6B
wL
EI

θ =  

P

L
A B

 

3

3B
PL
EI

δ =  
2

2B
PL
EI

θ =  

L
A B

M

 

2

2B
ML

EI
δ =  B

ML
EI

θ =  
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General Equations 

Coordinate x is zero at A and increases to the right. The right angled brackets evaluate 

to zero if the term inside is negative (called Macaulay brackets) 

 

w

L

A B
C

 
( )

( )

3

2 3

3 4

2

24

2 6

6 24

A

A

A
A

A
A

wLV

wLEI

V wEI x x x EI

V wEI x x x EI x

θ

θ θ

δ θ

=

= −

= − +

= − +

 

P

a b
L

A B
C

 

( )

( )

( )

2 2

22

33

6

2 2

6 6

A

A

A
A

A
A

PbV
L

PbEI L b
L

V PEI x x x a EI

V PEI x x x a EI

θ

x

θ θ

δ θ

=

= − −

= − − +

= − − +

 

aL
L

A B
C

 

( )

( )

( )

2 2

2

23

3
6

2

6 2

A

A

A

A

MV
L

MEI L b
L
MEI x x M x a EI
L

M MEI x x x a EI
L

θ

θ θ

xδ θ

=

= − −

= − − +

= − − +

 

a c

A B
w

b

L
 

( ) ( )

( )

( )

4 42

3 32

4 43

2

6 24

2 6 6

6 24 24

A

A
A

A
A

A
A

wc cV L b
L

V wEI L L b L a
L

V w wEI x x x a x b EI

V w wEI x x x a x b EI x

θ

θ θ

δ θ

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎡ ⎤= + − − −⎣ ⎦

= − − + − +

= − − + − +
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